
Cpsc 448: Problem Solving in Computer Science
Midterm 1: February 27, 2003.

Name: _________________________________

Student Number: _________________________

Instructions, Rules & Regulations.

This examination booklet has 10 pages. Please ensure that your copy is complete. Do NOT
open the booklets until prompted to do so. This examination will last for 80 minutes, and there
are a total of 70 marks available on the test. There are easier and more difficult questions on the
exam. The amount of marks allocated to each question is marked besides the question; use them
to guide your time management.

To aid you in writing the exam, you are permitted to bring notes to the exam. The following
items, and only these items, are acceptable as notes: Any hand-written notes from this (or any
other) class; Any handouts of from this (or any other) class; Print-outs of any of your code; and
finally any print-outs of material posted to the course web page. Note that in particular, the
(optional) textbook of the course is NOT permitted.

In those questions where you are asked to write an algorithm, pseudo code is acceptable.
Unless explicitly instructed otherwise, you can use any of the algorithms introduced in class as
part of your solutions. Assume that your programs will be given 30 seconds on a reasonable 20th

century computer to solve the problem (this means that you have several billion operations, but
not more).

NOTE: You must answer questions 1, 2 and 3.
Pick 4 more questions to answer from questions 4
through 9. Indicate your choice clearly in the table.
We will mark only the questions marked with a
YES in the table, no points are given for work on
questions that were not marked. Please turn off any
cell-phones, pagers or alarm clocks. Smoking is not
permitted during the exam. Good luck!

Student Signature:

Page 1 of 11

Question Answered Marks

1 YES /10

2 YES /8

3 YES /12

4 /10

5 /10

6 /10

7 /10

8 /10

9 /10

Total /70

Question 1. True/False Questions [10 marks].
For each statement below, indicate whether it is true or false.

T F BFS is useful for finding shortest paths in unweighted graphs.

True: BFS works very well here.

T F The Bellman-Ford algorithm does not work on graphs that have negative
weight cycles.

False: Bellman-Ford detects whether there are negative
weight cycles. In contrast, Floyd-Warshall will not
notice such a cycle.

T F If a problem can be solved recursively then it can be solved
asymptotically more quickly using dynamic programming.

False: For example, insertion into a binary search tree
can be implemented recursively in O(log n) time, which
is optimal (no asymptotically faster algorithm exists).

T F Given an undirected unweighted graph G = <V, E> with |V|=|E|=10
000, representing this graph as an adjacency matrix takes up less space than as an
adjacency list.

False: An adjacency list will need about 20,000 memory
locations, depending on the exact implementation. An
adjacency matrix will need 100,000,000 memory
locations.

T F We wish to provide v > 10 dollars in change. If we can do so using an
unlimited supply of coins of values 2, 4, and 9, then we can also provide change
with an unlimited supply of coins of values 2, and 5.

True: Note that 4 = 2 + 2 and 9 = 2 + 2 + 5. So we can
make 2, 4 and 9 out of 2 and 5 using addition.

Page 2 of 11

Consider the following directed graph to answer the remaining True/False
questions.

T F Disregarding the weights, the graph can be represented as G = <V, E>
with V = {a, b, c, d, e}, and

E = {(a,b), (b,c), (b,e), (c,e), (a,e), (a,c)}.

False: There is no (a,e) edge.

T F There exists at least one negative weight cycle in the graph.

False

T F Length of the shortest path from a to e is 3.

False: The path a->c->e has length -1.

T F Suppose we run DFS on this graph, starting at vertex a. The algorithm will visit
e at most once.

True: DFS, as described in class, always visits every
(accessible) vertex exactly once.

T F The length of the longest path between any pair of vertices in the graph is 3.

True: The path c->e is the longest (length 3). Non-
existant paths (like the one from a to d) do not
technically have a length. However, since we have not
made this clear, the answer “False” was also accepted.

Page 3 of 11

Question 2. Edge Counting [8 marks].
In the table below, rows and columns describe different attributes that a graph
can have. For example, cell 1,1 represents a graph that is directed, and may
contain self-loops i.e., a vertex A may have an edge to itself. Fill in the table,
where each cell contains the maximum number of edges that a graph of that
particular type can have. Given answers in terms of n, the number of vertices in
the graph.

Directed Undirected

Self-loops
allowed n 2

n
n

�
1

2

Self-loops
not

allowed
n n � 1 n

n � 1
2

Page 4 of 11

Question 3. Short Answer Questions [12 marks].
For each question provide a short answer. For questions asking about time, or
space complexity, no proof is required.

1.[2 marks] What is the asymptotic running time of the Bellman-Ford
single-source shortest path algorithm, as a function of |V| and |E|?
how about the Floyd-Warshall all-pairs shortest path algorithm?

Bellman-Ford: O V E , Floyd-Warshall: O V 3

2.[2 mark] Which algorithm is asymptotically faster for searching a
graph, looking for a given vertex, DFS or BFS?

Neither. They are both linear in V � E .

3.[2 marks] What is the output from the following code fragment?
char s[10] = “ABERCDZYX”;
next_permutation(s[0], s[9]);
cout << s << endl;

ABERCXDYZ: The next string after ABERCDZYX in
lexicographic order.

4.[2 marks] Both shortest path algorithms we have encountered produce a
‘predecessor array’ as one of their outputs. Describe what information
is contained in this array.

For each vertex v � V , pred[v] is the vertex u visited
immediately before v in the shortest path.

5.[2 marks] Given a graph and two vertices in the graph, describe one
algorithm that can be used to detect if there exists a path between the
two vertices.

DFS or BFS are the best choices (linear time).

6.[2 mark] We introduced an algorithm in class for finding exactly
which amounts of change could be created given a (finite) set of coins.
What will be the time and space complexity of the algorithm if we run
it on a set containing n coins, where the total value of the coins
present is S?

Time is O nS , space is O S .

Page 5 of 11

Pick 4 more questions to answer from questions 4 through 9. Indicate your choice
clearly in the table provided on the cover of the exam.

Question 4. Data Structures [10 marks]
You are required to implement a collection class that supports the following
operations, all in constant time.
 - void Insert(int element)
 - Collection Combine(Collection C1, Collection C2)
 - void Print()

Elements are inserted into the collection using the Insert operation. Two
collections can be combined using the Combine operation to obtain a new
collection with the elements of both collections. The collection MAY contain
duplicate elements. Print() is the only access to the elements in the collection,
and is NOT required to print the elements in sorted order. It is not even required
to group duplicate objects together when printing.

Which data structure(s) would you use to implement this class? Give a short
description of how each of the 3 operations will be implemented to conform to the
constant time restriction.

A linked list would do the job. The list would be kept
in unsorted order. To insert an element, add it to the
front (or the back) of the list. To combine two lists,
splice them by connecting the last element of the first
list to the first element of the second list. To print,
traverse the list.

Page 6 of 11

Question 5. k-Paths [10 marks]
You are given
 - a graph G = (V, E), with |V| <= 10,
 - two vertices, s and t, in V, and
 - an integer k (0 < k < |V|).

Give an algorithm that will print a path from s to t in G of length exactly k if one
exists. If not, print "No Way". Please specify the data structure(s) you use to
represent the graph.

One possible solution involves taking the adjacency
matrix of G to the k'th power. This is tricky to do
because we would need to keep track of a predecessor
array while taking powers.

A better solution uses a modified BFS. If we omit the
seen set and do exactly k steps of BFS, starting at s,
the queue will contain all the vertices reachable in
excatly k steps. If t is on the queue at that moment,
follow the pred array back to s to find the path.
Otherwise, print “No Way”. By “a step of BFS” here I
mean processing all the vertices on the queue that have
the same depth. So, the first step would be adding all
of s's neighbours to the queue. The second step will
add all the neighbours of s's neighbours. Since we do
not keep a seen set, the second step will add s to the
queue again. Here is the C++-like pseudocode:

void getPath(G, int s, int t, int k) {
int pred[k][NUM_VERTICES(G)];
foreach (i, j) pred[i][j] = -1;

queue< int > q;
q.push(s);
int count = 1;
for(int i = 0; i < k; i++) {

while(count--) {
int u = q.top(); q.pop();
foreach neighbour v of u in G {

pred[i][v] = u;
q.push(v);

}
}
count = q.size();

}
if(q.count(t)) {

for(int v = t; v >= 0; v = pred[--k][v]) {
printf(“%d <- “, v);

}
printf(“\n”);

}
else printf(“No Way\n”);

}
For a similar problem, take a look at assignment 4:
problem P.

Page 7 of 11

Question 6. Useless Computations [10 marks]
We need a way to quickly compute f(a,b) defined below, given integers a and b in
range [0, 100]. The recursive solution takes in excess of 2^100 iterations; we can
not afford that much time. Provide pseudo code for this task. Your algorithm need
to take in two integers a, b, and return another integer, that of value f(a,b). Hint:
Do not try to solve the recurrence for a closed form.

All we need to do to make the recursive solution fast
enough is use memoization:

bool seen[128][128];
int table[128][128];

int f(int x, int y)
{

if(!seen[x][y])
{

table[x][y] = (
x == 0 ? 0 :
y == 0 ? x :
y + f(x – 1, y) - f(x, y – 1));

seen[x][y] = true;
}
return table[x][y];

}

void main()
{

memset(seen, 0, sizeof(table));

// Get the values of x and y from the input

cout << f(x, y) << endl;
}

Page 8 of 11

Question 7. Puddles [10 marks]
The street is full of circular puddles. You are a 5-year-old kid standing in the
center of puddle number 1. You want to get to puddle number n, but you want to
minimize your dry land walking distance.

Your input is the number n, followed by n triples of integers (Xi, Yi, Ri), one for
each puddle. Xi, and Yi are the Cartesian coordinates of puddle i; Ri is its radius.

Write an algorithm that will print the minimum distance you have to walk on dry
land.

This is a standard single-source shortest path problem.
Here, the puddles are the vertices. The source vertex
is puddle number 1. The destination vertex is puddle
number n. Think of edges as being the straight-line
segments, connecting the centers of a pair of puddles.
Draw an edge between every pair of puddles. The weight
of an edge in this case is the dry-land distance
between the two puddles, i and j, given by the formula

d i , j � X i
� X j

2 � Y i
� Y j

2 � Ri
� Rj

With this in mind, run a shortest-path algorithm (for
example, Bellman-Ford) and print the answer.

Page 9 of 11

Question 8. Transitive Closures [10 marks]
Given a graph G=(V,E), produce a graph H=(V,E*) with the same vertex set, but
such that E* will contain an edge (u,v) if and only if there is any path in G from u
to v. Assume both graphs are directed. H is called the "transitive closure" of G.

Give pseudo code for computing the transitive closure of a given graph G. Do
not worry about details of reading the graph from input or outputting the transitive
closure after you compute it. Concentrate on computing its transitive closure.
Please specify explicitly the data structure(s) you use to represent the two
graphs.

Consider the adjacency matrix M of G, represented as an
array of bools – M[i][j] is true if there is an edge
(i,j) in G and false if there is not. Now run this
variant of the Floyd-Warshall algorithm:

for(int k = 0; k < n; k++)
for(int i = 0; i < n; i++)

for(int j = 0; j < n; j++)
M[i][j] = M[i][j] || M[i][k] && M[k][j];

Now M contains the adjacency matrix of the desired
transitive closure.

Page 10 of 11

Question 9. Height Advantage [10 marks]
The following algorithm is a straight forward modification of BFS for searching
through a map for a given location. Each vertex is represented by a triple (x, y, z)
where z is the height. At each step, instead of picking the first node in the queue
(as BFS typically does) we pick the vertex in the queue with largest height. Given
the undirected graph below, the source and destination, carry out the algorithm
and show the vertices visited by the algorithm in the order visited, starting from
Source until arriving at Destination. Hint: Destination will be found in finite time.

We wish to start from Source (0,0,0), and end up at Destination (3,4,5).

The vertices will be visited in this order:

(0,0,0)
adds (0,1,7) and (1,1,6) to the queue.

(0,1,7)
adds (1,3,1) to the queue.

(1,1,6)
adds (2,0,2) and (2,3,4) to the queue.

(2,3,4)
adds (3,4,5) to the queue (1,3,1) is already on the queue.

(3,4,5)
Done.

The key idea here is that at every step, the algorithm
has a queue (set) of frontier vertices. Then, among
these vertices, it picks the one with the largest z-
value and adds all of its neighbours to the frontier.

Page 11 of 11

